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SUMMARY Klebsiella pneumoniae carbapenemase (KPC) variants, which refer to the
substitution, insertion, or deletion of amino acid sequence compared to wild blaxpc type,
have reduced utility of ceftazidime-avibactam (CZA), a pioneer antimicrobial agent in
treating carbapenem-resistant Enterobacterales infections. So far, more than 150 blakpc
variants have been reported worldwide, and most of the new variants were discovered
in the past 3 years, which calls for public alarm. The KPC variant protein enhances
the affinity to ceftazidime and weakens the affinity to avibactam by changing the
KPC structure, thereby mediating bacterial resistance to CZA. At present, there are
still no guidelines or expert consensus to make recommendations for the diagnosis
and treatment of infections caused by KPC variants. In addition, meropenem-vaborbac-
tam, imipenem-relebactam, and other new [-lactam-f-lactamase inhibitor combinations
have little discussion on KPC variants. This review aims to discuss the clinical character-
istics, risk factors, epidemiological characteristics, antimicrobial susceptibility profiles,
methods for detecting blakpc variants, treatment options, and future perspectives of
blakpc variants worldwide to alert this new great public health threat.
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INTRODUCTION

A ntimicrobial resistance has become one of the most severe threats to global
public health. Infections caused by carbapenem-resistant Enterobacterales (CRE) are
associated with a particularly significant economic burden and mortality rate (1), which
is often two to three times higher than carbapenem-susceptible Enterobacterales (2).
Furthermore, CRE isolates are resistant to most of the antimicrobial agents available,
limiting the choice of antimicrobial agents in clinical practice (2-4). In 2017, the World
Health Organization published a priority list of antibiotic-resistant bacteria that listed
CRE, carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant
Acinetobacter baumannii (CRAB) as the most urgent threats, suggesting that there is an
urgent need to develop new antimicrobial agents to counteract the rapid acquisition of
antimicrobial resistance (5).

The most important mechanism underlying carbapenem resistance in carbapenem-
resistant Klebsiella pneumoniae (CRKP) and carbapenem-resistant Escherichia coli is the
production of carbapenemases, including class A carbapenemases [mainly Klebsiella
pneumoniae carbapenemase (KPC)], class B metallo-B-lactamases [mainly New Delhi
metallo-B-lactamase (NDM)] , and some class D OXA-48-like carbapenemases (mainly
OXA-181, OXA-232, and OXA-163) (6). Based on those, novel B-lactam-B-lactamase
inhibitor combinations were developed continually to cope with infections caused
by carbapenemase-producing Enterobacterales, including ceftazidime-avibactam (CZA),
meropenem-vaborbactam, and imipenem-relebactam. CZA, launched in the USA in 2015
and in China in 2019, displayed potent in vitro activity against KPC-producing Enterobac-
terales and is a pioneer antimicrobial agent in treating infections caused by KPC-pro-
ducing Enterobacterales (7-9). Unlike traditional enzyme inhibitors such as tazobactam
and sulbactam, avibactam does not contain a B-lactam structure. Avibactam acts by
covalent acylation of its B-lactamase targets in a reversible process in which the structure
of avibactam is restored by deacylation (without hydrolysis), and intact avibactam
is released to provide long-lasting enzyme inhibition effect (10). Most importantly,
avibactam has a broader spectrum, inhibiting class A carbapenemases (particularly
KPC-2), extended-spectrum B-lactamases (ESBLs), class C cephalosporinases, and some
class D carbapenemases. Therefore, since its introduction into clinical use, CZA has been
considered one of the most effective antimicrobial agents for the treatment of infections
caused by KPC-producing strains, especially K. pneumoniae (9).

Nevertheless, the widespread clinical use of CZA has forced CRE to mutate to adapt
to the increasing antibiotic pressure. The blakpc variant derived from blakpc., or blakpc-3
mutation has been reported (11-13). The blakpc variant usually refers to the substitu-
tion, insertion, or deletion of one or more amino acids compared to wild blakpc type
(such as blagpc.o and blakpc.3), and those leading to modifications in the amino acid
sequence with the carbapenemase active site, which are of greatest concern. So far,
more than 145 blakpc variants have been reported worldwide, and most of the new
variants were discovered in the past 3 years. A crucial phenotypic feature of KPC variants
is their resistance to CZA compared to the wild-type (WT) gene product that is notably
susceptible. This has led to new challenges in appropriate therapeutic selection (11, 14).
In addition to posing a challenge for antimicrobial therapy, blakpc variants may challenge
the performance of some classical carbapenemase detection methods used by clinical
laboratories (14).

This review aims to discuss the clinical characteristics, risk factors, epidemiologi-
cal characteristics, antimicrobial susceptibility profiles, methods for detecting blakpc
variants, treatment options, and future perspectives of blakpc variants worldwide to alert
this new significant public health threat.
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EFFICACY OF CEFTAZIDIME-AVIBACTAM IN THE TREATMENT INFECTIONS
CAUSED BY KPC-PRODUCING ENTEROBACTERALES

A multicenter, prospective, observational study was conducted between January 2018
and March 2019 to evaluate the outcomes and predictors of mortality in patients with
KPC- or OXA-48-K. pneumoniae infections treated with CZA, with a focus on KPC-K.
pneumoniae bloodstream infections (BSIs) (15). The study included 147 patients, 140
isolates were KPC-positive and 7 isolates were OXA-48-positive. Of these patients, 68
(46.3%) received CZA and 79 (53.7%) received CZA in combination with at least one
other active agent, such as colistin, aminoglycosides, colistin plus tigecycline, tigecycline,
trimethoprim/sulfamethoxazole, fosfomycin, etc. The 14- and 28-day mortality rates
were 9% and 20%, respectively. The clinical characteristics of 71 patients with KPC-K.
pneumoniae BSls treated with a regimen containing CZA (cases) and of 71 patients,
matched by propensity score, whose KPC-K. pneumoniae BSls were treated with regimens
not containing ceftazidime/avibactam (controls) were collected in this study. The results
showed that 28-day mortality in the patients with KPC-K. pneumoniae BSls treated
with CZA was significantly lower than that observed in the matched patients whose
KPC-K. pneumoniae BSls were treated with regimens without CZA (18.3% vs 40.8%; P
= 0.005). A retrospective, observational, multicenter study of 577 adults with BSIs or
non-bacteremic infections primarily involving the urinary tract, lower respiratory tract,
and intra-abdominal structures was conducted to evaluate the outcomes and mortality
in patients with KPC-K. pneumoniae infections treated with CZA monotherapy and CZA
combination regimens (16). The results showed that the 30-day all-cause mortality rate
was 25% (146/577). There was no significant difference in mortality between patients
treated with CZA alone and those treated with combination regimens (26.1% vs 25.0%,
P = 0.79). Another retrospective multicenter study of 138 Italian patients with KPC-K.
pneumoniae infections (KPC-K. pneumoniae bacteremic, KPC-K. pneumoniae non-bactere-
mic), all of whom received CZA as salvage therapy, was conducted to document the
clinical characteristics and outcomes of these cases and to specifically investigate the
outcomes and predictors of mortality in patients with KPC-K. pneumoniae bacteremia
(17). All KPC-K. pneumoniae isolates were susceptible to CZA in vitro. The overall 30-day
mortality rate was 34.1% (47/138), and 8.7% (12/138) of patients experienced recurrent
KPC-K. pneumoniae infection after discontinuation of CZA treatment. In addition, the
30-day mortality rate of 109 patients with KPC-K. pneumoniae bacteremia receiving CZA
was significantly lower than that of the control group (36.5% vs 55.7%, P = 0.005). This
suggests that CZA-based therapy is an effective treatment option for infections caused
by KPC-producing Gram-negative bacteria.

In the context of increasing carbapenem resistance in Enterobacterales, the introduc-
tion of CZA, with its broad spectrum of enzyme inhibition and low side effects, has
provided a major boost to the clinical treatment of CRE infections (7, 9). CZA is the
preferred treatment option for KPC-producing infections outside of the urinary tract (18).
However, as CZA becomes more widely used in clinical practice, KPC-producing strains
develop resistance to CZA through mutation under conditions of antimicrobial pressure
and the presence of various other factors, leading to treatment failure (19, 20).

EPIDEMIOLOGICAL CHARACTERISTICS OF KPC-TYPE CARBAPENEMASE

First identified in 1996 in the northeastern United States, KPCs are the most com-
mon and widely distributed carbapenemases (21). KPCs can hydrolyze most B-lac-
tams, including carbapenems, cephalosporins, monobactams, and cephamycins. They
have been identified in many Gram-negative bacteria, including Enterobacterales and
nonfermenting bacteria (e.g., P. aeruginosa and A. baumannii). K. pneumoniae is the
most predominant KPC-producing species (22, 23). The strains producing KPC-2 or
KPC-3 showed diverse susceptibility to imipenem and meropenem but were usually
resistant to ertapenem. With the widespread use of carbapenems, KPC-producing
bacteria have spread internationally. The dissemination of blakpc involves clonal spread,
horizontal transfer, and plasmid-mediated spread. The prevalent blakpc variants vary
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with geographic location, e.g., a predominance of blakpc.; in China but a predominance
of blakpc.3 and blagpc. in the Americas and Europe (24-28). The international spread of
KPC-producing K. pneumoniae is primarily associated with a single multilocus sequence
type, sequence type 258 (ST258), and its variants (29). K. pneumoniae ST258 is the culprit
in over 77% of KPC-producing K. pneumoniae infections in the USA and 90% in Israel
(25, 26). The profile of sequence types (STs) was different between regions. ST512 is the
most prevalent ST in Italy (28), whereas ST11 and ST437 predominate in China and Brazil,
respectively (30, 31). Transmission of blakpc genes is mainly mediated by horizontal
transfer of plasmids or mobility of small genetic elements (mainly Tn4407 transposon)
(32). The blakpc in K. pneumoniae had been reported on various plasmid types, such as
IncF, Incl2, IncX, IncA/C, IncR, and ColE1, but the predominant plasmid type is IncF with
FIl K replicon (29, 33, 34).

Sporadic variants of blakpc were identified in 2006-2018 (<7 reported per year) (35).
However, since 2019, reports of blakpc variants have increased dramatically. The number
reported between 2019 and 2020 exceeds the sum of reported blagpc variants in the
previous 17 years (Fig. 1 and 2). The emergence of blagpc-o or blakpc-3 mutants, such
as blakpc-33, blakpc-31, etc., as the most prevalent cause of bacterial resistance to CZA
during therapy has been attributed to the mechanism that altered the Q-loop hydrogen
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FIG 1 Distribution of Klebsiella pneumoniae carbapenemase variants based on KPC-2 and KPC-3 mutations. The data are calculated based on the num-
ber of Klebsiella pneumoniae carbapenemase variants uploaded to the National Center for Biotechnology Information each year in each region (https://
www.ncbi.nlm.nih.gov/).
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FIG 2 KPC variants evolutionary tree analysis chart (A) and the number of new variants reported in
PubMed over the years (B) (up to March 2023).

bonding structure of KPC (Fig. 3) (36, 37). Compared to the wild type, KPC variant protein
presented reduced catalytic ability to carbapenems, meanwhile responding poorly to
avibactam inhibition (38-40). The crystallographic analysis of the D179N KPC-2 variant
and the D179Y variant revealed the depth mechanism of CZA resistance conferred by
D179N/Y variants of KPC-2 (40). The D179N KPC-2 structure showed that the change
of the carboxyl to an amide moiety at position 179 disrupted the salt bridge with
R164 present in KPC-2. Additional interactions were disrupted in the Q-loop, causing a
decrease in the melting temperature. Shifts originating from N179 were also transmitted
toward the active site, including ~1-A shifts of the deacylation water and interacting
residue N170 (40). The structure of the D179Y KPC-2 (KPC-33) revealed more drastic
changes, as this variant exhibited disorder of the Q-loop, with other flanking regions also
being disordered (40). On the contrary, the crystal structure of D179N KPC-2 in complex
with vaborbactam revealed wild-type KPC-2-like vaborbactam-active site interactions,

Month XXXX Volume 0 Issue 0

Clinical Microbiology Reviews

10.1128/cmr.00008-23 5

Downloaded from https://journals.asm.org/journal/cmr on 08 November 2023 by 202.120.224.68.


https://doi.org/10.1128/cmr.00008-23

Review

/
, R178
PR /" R161
ool
Vs D179 00 o
RN ’

0‘. \
, . )
L el /f‘:J,D]“

FIG 3 Q-Loop destabilization as a mechanism of resistance to ceftazidime-avibactam. (A) Structure of KPC-2 (Protein Data
Bank accession number 5UL8), Q-Loop was shown in yellow; (B) hydrogen bonding network involving Q-loop Arg and Asp
residues in the WT KPC-2 (40); (C) Hydrogen bonding network involving Q-loop Arg and Asp residues in D179N KPC-2 (40).

with D179N change in KPC-2 that does not perturb the binding mode of vaborbactam
significantly (40).

By March 2023, 145 blagpc variants are registered in the National Center for Biotech-
nology Information (NCBI) database, all derived from mutations of blakpc-, or blakpc-3.
Overall, blakpc.4 (n = 26), blakpc-33 (n = 9), blakpc.12 (n = 8), blapc. (n = 5), blakpc 71
(n = 4), blagpc-10 (n = 3), blakpc-76 (n = 3), blakpc-a4 (n = 3), blakpc-25 (n = 2), blakpc-36
(n = 2), blakpcs (n = 2), and blakpc-g9p (n = 2) were mutants from blakpc-o. These KPC-2
variants were mainly identified from the USA (n = 35), China (n = 20), and ltaly (n =
3). In contrast, blakpc-31 (n = 8), blakpc-e (N = 4), blakpc-e7 (N = 3), blakpc1g (N = 2),
blagpc-29 (n = 2), blagpc-40 (n = 2), blagpc49 (n = 2), blakpc-e1 (n = 2), and blagpc.70 (n =
2) were mutants from blagpc-3. These blakpc-3 variants were mainly reported from Italy (n
= 15), the USA (n = 8), and France (n = 1). We aggregated the number of blakpc variants
uploaded to NCBI each year by region, and the global distribution of specific variants is
shown in Fig. 1. The USA and China ranked first and second with 63 and 59 detected
cases, respectively. It is worth noting that China showed a sudden increase in blagkpc
variants in 2020 after ceftazidime-avibactam was approved for clinical use in 2019. The
threat of blakpc variants in China may be more worthy of vigilance. The blakpc variants
gene have been identified in various Gram-negative bacilli, including K. pneumoniae
(73.8%), Enterobacter hormaechei (7.1%), E. coli (6%), and Enterobacter cloacae (5.5%),
among which K. pneumoniae is predominant (Tables 1 and 2).

The most frequently reported blakpc-, variant, blakpc-33, was derived from blakpc-2
with a single amino acid substitution. It was first reported in Italy in October 2020 and
subsequently reported in China and Greece (41, 42). In these studies, blakpc-33 was
harbored by K. pneumoniae, which was predominantly isolated from rectal swabs and
sputum samples. Although the ST distribution of KPC-33-producing K. pneumoniae varies
in different regions, ST11 in China, ST1685 in lItaly, and ST39 in Greece, these strains
share the same feature that all blakpc.z3 are carried by Tn4401-like transposons (30,
37, 42). The most frequently reported blakpc-3 variant, blakpc-31, derived from blakpc-3
with a single amino acid substitution (D179Y), was first reported in Italy in August 2019
and subsequently mainly reported in Italy, France, and Spain (12, 36, 43-45). The K.
pneumoniae strain producing blagpc-31 is primarily detected in blood specimens, and the
corresponding STs included ST512, ST307, ST101, and ST2502. Like other blagpc variants,
all blakpc-371 are located on the genetic element of Tn4407-like transposons (12, 36, 43—
45).

THE CLINICAL CHARACTERISTICS AND RISK FACTORS OF blagpc VARIANTS

In 2017, Shields et al. (46) first reported the evolution of blakpc in three patients with
infection due to KPC-producing K. pneumoniae, resulting in therapy failure. blakpc.3 was
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mutated to blakpc-31 and blakpc-3> during CZA treatment for 10 to 19 days. By searching
the PubMed database, up to August 2022, 18 cases of infections caused by KPC variant-
producing Enterobacterales have been reported internationally. These infections were
reported in 11 males, 5 females, and 2 patients of unknown sex. K. pneumoniae was the
pathogen in 16 cases, E. coli and C. koseri in one case each (Table 3) (11, 44-55). Limited
data showed that blakpc.31 (44.4%, 8/18) and ST 258 (22.2%, 4/18) were the dominant
genotypes and ST type of blakpc variants. All patients were treated with CZA (for 9-41
days) before KPC variant-producing Enterobacterales strains were identified, suggesting
that CZA treatment may be an independent risk factor for inducing mutations of blakpc.
In the 18 patients infected with a KPC variant-producing CRE strain, the treatment failure
rate was up to 38.9% (7/18), and 50% (8/16) of the patients were older than 50. Four
patients continued to receive CZA in combination with other antimicrobial agents
(including meropenem, tigecycline, amikacin, or imipenem) for anti-infective treatment
after CZA-resistant blakpc variant strains were identified. Among them, three patients
were not successfully cured after receiving the above anti-infection regimens, while one
was cured after receiving CZA in combination with imipenem. Eleven patients discontin-
ued CZA therapy and were treated with other antimicrobial agents, to which the
bacterial isolates were susceptible, including tigecycline, polymyxin B, colistin, merope-
nem, and amikacin. Among them, seven patients’ infection symptoms were effectively
controlled. Three patients were successfully treated with meropenem-vaborbactam,
based on the bacteria being in vitro susceptible to meropenem-vaborbactam. However,
more real-world research data are still needed to confirm the effectiveness of merope-
nem-vaborbactam in treating infection caused by the blakpc variant.

A retrospective, observational research was conducted with all patients admitted
to the intensive care unit (ICU) dedicated to coronavirus disease patients at the City
of Health & Sciences in Turin, between May 2021 and January 2022, with the primary
endpoint to study strains with resistance to CZA. This study enrolled 17 patients with
colonization or invasive infection caused by CZA-resistant K. pneumoniae which were
susceptible to meropenem. It is worth noting that 76.5% of patients did not receive
therapy with CZA. Cluster analysis showed that 16 KPC-33-producing K. pneumoniae
isolates belonged to a single clone, indicating that there was a risk of clonal transmission
of this novel blagpc variant (58).

KPC-2 or KPC-3 carbapenemase-producing K. pneumoniae are susceptible to
mutations during treatment leading to treatment failure, and the occurrence of such
mutations is not easily recognized clinically and may be missed, putting infected patients
at high risk. Available studies suggest that the use of ceftazidime-avibactam is an
important factor in the development of mutations in KPCase-producing K. pneumoniae.
As there are no current guidelines for the treatment of infections caused by KPCase-
producing mutants of K. pneumoniae, it is recommended that clinical monitoring for
changes in antimicrobial susceptibility to antimicrobial agents, particularly carbapenems
and ceftazidime-avibactam, be performed at regular intervals (e.g., 3-5 days) to monitor
for the occurrence of mutations.

GENETIC SEQUENCES SURROUNDING blagpc CARBAPENEMASE GENES

Transposable elements play an essential role in bacteria’s genetic variation and
evolution. In most countries and regions, such as Europe (33), the USA (59), and Brazil
(31, 60), the blakpc is mainly located on transposable elements like Tn4401, Tn3-Tn4401
chimera CTB, and 1S26. Tn4401 and Tn3-Tn4401 chimera CTB, belonging to the Tn3 family,
can mobilize blakpc» at a high transposition frequency. Tn4401, a 10 kb transposon,
has been reported as the genetic structure mediating original blagpc acquisition, with
the gene order of Tn4401-tnpR, Tn4401-tnpA, I1SKpn7, blakpc, and 1SKpn6 (61). Owing
to the diversity in the intervening sequence between the ISKpn7 and blaxpc genes, a
total of eight unique Tn4401 isoforms (a to h) have been characterized, with Tn4401a
and Tn4401b being the most widespread (62). In Asia, blakpc-> is predominantly located
on different variants of Tn1727 and 1S26 (63-65). However, the structural sequences
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surrounding the blakpc variants genes are infrequently described. Scattered studies have
shown that some KPC variants, similar to blakpc.o and blakpc-3, are located within the
Tn4401 transposon (56). The core structure of ISKpn6-blakpc- 1SKpn28 was identified
in blakpc-12 and blakpc.74 (Tables 1 and 2). Therefore, we collected 52 blakpc variant
gene sequences from NCBI databases to analyze the genetic environment surrounding
the blakpc gene. The result showed the core structure of the tnpR-tnpA-1SKpn7-blaypc-
ISKpn6 was identified in the strains carrying blakpc-31, blakpc-32, blakpc-33, blakpc-14,
blakpc.se, blakpc-29, blakpc-es, blakpc-27, blakpc-ag, or blakpc.11s. The core structure of
the I1SKpn27-blakpc-ISKpn6 was identified in the strains producing blakpc.71, blakpc-79,
blakpc-93, blakpc-123, blakpc-s1, or blakpc-s2 (Fig. 4).

SUSCEPTIBILITY PROFILE OF THE STRAINS PRODUCING KPC VARIANTS

The blakpc variants can cause a seesaw effect. On the one hand, under the pressure of
CZA, the blakpc sequence mutates, including blakpc.g (66), blakpc-30, blakpc-z1 (36),
blakpc-32, blakpc-ag (67), blakpc-41 (68), blakpc-so (69), and blakpc.s7 (42), resulting in
changes in the protein structure and weakening its ability to bind to avibactam, thus
making the bacteria resistant to ceftazidime-avibactam [minimum inhibitory concentra-
tion (MIC) range 16->128 mg/L]. On the other hand, the bacteria regained their suscepti-
bility to carbapenems (especially imipenem, Table 4). In recent years, with the increasing
public attention to blakpc variants, studies have found that some blagpc variants play
avibactam-resistant ESBL profile, including blakpc.14 (70), blakpc-2g (71), blakpc-33 (36),
blakpc-a6, blakpc-s1 (72), blakpcsy (72), blakpcsz (73), and blakpc.ge (36). The ESBL
phenotype-positive KPCs can be inhibited by the classic enzyme inhibitor clavulanic acid;
ESBL phenotype confirmatory tests that routinely use clavulanic acid as an inhibitor
often report positive results, misleading the clinicians to consider the strains as ESBL
producers rather than carbapenemase producers. KPC variants producing strains tended
to be inhibited by meropenem-vaborbactam. Therefore, meropenem-vaborbactam is
considered a salvage therapy after failure of CZA treatment (49). It is important to note
that CRE strains carrying blagpc variants with decreased susceptibility to CZA can also
show cross-resistance to the siderophore cephalosporin cefiderocol (74). This may be
related to the fact that cefiderocol and ceftazidime are very similar in structure.

KPC VARIANTS POSE NEW CHALLENGES FOR LABORATORY TESTING

Rapid detection of blakpc is essential in treating CRE infections. Standard methods for
detecting carbapenemases include both phenotypic and genotypic assays. Phenotypic
assays include the Carba NP assay, modified carbapenem inactivation method (mCIM),
EDTA-modified carbapenem inactivation method (eCIM), 3-aminophenylboronic acid
(APB)/EDTA method, and time-of-flight mass spectrometry (86-88). Genotypic detection
methods based on nucleic acid detection techniques, include GeneXpert Carba R assay
(Cepheid, Sunnyvale, CA, USA), Verigene Gram-negative blood culture test (Nanosphere,
Northbrook, IL, USA), and FilmArray system (bioMérieux, Marcy I'Etoile, France) (89-92).
Phenotypic assays are mainly based on the ability of carbapenemases to hydrolyze
carbapenems. The sensitivity and specificity of Carba NP assay, mCIM, eCIM, and APB/
EDTA method are higher than 90% in detecting carbapenemases [including KPC, NDM,
Verona metallo-fB-lactamase (VIM), Sdo Paulo metallo-B-lactamase (SPM)] (93-97).
Moreover, phenotypic assays have been highly favored due to their low cost. However,
the emergence of blakpc variant genes poses significant challenges to such phenotypic
assays in detecting blakpc variant genes among CZA-resistant CRE (14). Since KPC-variant
producing strains are often susceptible or intermediate to imipenem or meropenem,
carbapenemase phenotypic assays are prone to reporting false-negative results (81). NG-
Test Carba 5 and RESIST-5 O.0.K.N.V are two of the most commonly used enzyme-linked
immunochromatography-based test strips. Ding et al. (14) showed that NG-Test Carba 5
effectively detected blakpc-35 (n = 3), blakpc-7g (n = 1), and blakpc-79 (n = 1), but false-
negative results were observed for blakpc-33 (n = 5), blakpc-71 (n = 1), and blakpc.7¢ (n =
8). A similar result was obtained by Bianco et al. in which NG-Test Carba 5 and RESIST-5
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0O.0.K.N.V could detect blakpc-14 (n = 2), but could not detect blakpc-31 (n = 4) and
blakpc-33 (n = 2) (12). The false-negative results of enzyme immunochromatography in
detecting blakpc variants may be related to the mutation site, which changes the target
site of carbapenemase binding to the antibody and thus fails to bind to the antibody,
resulting in false-negative results.

KPC variants may challenge the performance of some classical carbapenemase
detection methods used by clinical laboratories. PCR assay may be suitable to detect
blakpc variant. The GeneXpert Carba R assay is a qualitative, in vitro real-time PCR assay
designed to detect five arbapenemases gene families, including blayp, blakpcs or 3.
blanpm, blaoxa-ag, and blayy, with more than 96% sensitivity and specificity (90, 92, 98).
Ding et al. (14) showed that GeneXpert Carba R has potential advantage in detecting
blaypc variant due to its detection principle, which is not affected by gene locus variation
and can effectively detect blakpc-33 (n = 5), blakpc-3s5 (n = 3), blakpc-71 (n = 1), blakpc-76 (n
= 8), blakpc.7g (n = 1), and blakpc.79 (n = 1). Several studies showed that the presence of
the novel blakpc.46, blakpc-66, blakpc-92, blakpc-g4, and blakpc.gs were confirmed by the
X-pert Carba R assay (81, 99). A similar study compared three carbapenemase detection
methods, including GeneXpert Carba R, NG-Test Carba 5, and colloidal gold immunoas-
say test, to evaluate the performance of these methods in detecting KPC variants protein.
The result showed that GeneXpert Carba R can confirm the presence of all 13 types of
KPC variant protein, including KPC-2, KPC-3, KPC-25, KPC-33, KPC-35, KPC-51, KPC-52,
KPC-71, KPC-76, KPC-77, KPC-78, KPC-93, and KPC-123 (100). There are other methods for
detecting carbapenemases based on PCR amplification, such as Verigene Gram-negative
blood culture test (Nanosphere, Northbrook, IL, USA), FilmArray system (bioMérieux,
Marcy I'Etoile, France), etc., but there are no published data on the performance of these
methods in detecting KPC variants (91). Different methods for detecting KPC variants
may get different results. The laboratories need to pay attention to this special phe-
nomenon. When the conventional carbapenemase detection method shows negative
results, but the bacteria show resistance to CZA, further molecular testing is required to
determine whether bacteria produce carbapenemase.

The emergence of KPC variants disrupts conventional laboratory thinking about
carbapenemase detection and changes the practice of inferring bacterial susceptibility
to CZA from carbapenemase detection results (most automated susceptibility testing
systems do not yet include CZA). The reporting of false-negative carbapenemase
results is likely to mislead clinicians in their anti-infective treatment. Based on the
above information, we believe that CZA susceptibility testing should be performed
concurrently with carbapenemase testing, and KPC variants can be identified early by
combining the antimicrobial susceptibility phenotype and carbapenemase results to
provide more information early to start precision treatment of infections caused by KPC
variants.

CURRENTLY AVAILABLE TREATMENT OPTIONS
Carbapenems

Since several KPC-variant producing strains regained susceptibility to imipenem or
meropenem while remaining resistant to CZA, this suggests the potential value of
carbapenems in the treatment of infections caused by KPC-variant strains. Sporadic
cases of treatment success have been reported for meropenem alone (increased dose,
extended infusion time) or in combination with other antimicrobial agents in managing
infections caused by KPC variant-producing K. pneumoniae (45, 52). However, merope-
nem or other antimicrobial combinations have also shown a high failure rate in treating
such resistant strains in some cases when the blagpc variant reverts to the original
blakpc.o during treatment, allowing the bacteria to regain carbapenem resistance (11, 51,
57). Carbapenem therapy was associated with a 50% all-cause mortality rate in patients
infected with KPC variant producer (usually related to clinical failure), which is much
higher than that observed in patients with ESBL-producing K. pneumoniae infections
and similar to that observed in KPC-2/3-producing K. pneumoniae infections not treated
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with CZA (53). The limited data currently available suggest that most blakpc variants
occur during CZA treatment. As previously described, CZA inhibits KPC-2 or KPC-3,
while meropenem or imipenem provides potent activity against most KPC variants.
Since the bacteria may revert to classical blakpc phenotypes such as blakpc-, or blakpc-3
producer in response to environmental changes when treated with carbapenems alone
to which the bacterial isolates were susceptible, is it possible that an antimicrobial
regimen of carbapenems combined with CZA could effectively cover both the KPC-2/3
and KPC variants producing strains, thus preventing the chance of clonal transformation
of bacteria? Should we try this approach to meet the clinical needs? However, such
combinations in treating KPC variant-producing bacterial infections are rarely reported
(57). The efficacy and safety must also be validated by further data from in vitro or in vivo
studies.

New B-lactam-f-lactamase inhibitor combinations
Meropenem-vaborbactam

Vaborbactam is a non-B-lactam serine -lactamase inhibitor based on a cyclic boronic
acid pharmacophore (101). Meropenem-vaborbactam inhibits the activity of class A
serine enzymes (including ESBLs and KPC) and AmpCs, but not OXA-48 carbapenemases
and metallo-B-lactamases (102). Meropenem-vaborbactam was approved by the U.S.
Food and Drug Administration in 2017 for treating complicated urinary tract infections
(cUTIs) in adults and by the European Medicines Agency in 2018 for treating cUTIs,
complicated intra-abdominal infections, or hospital-acquired pneumonia and bactere-
mia occurring in association (or suspected association) with any of these infections
(103). In the European Union, meropenem-vaborbactam is also indicated for treating
infections caused by aerobic Gram-negative bacteria in adults with limited options. In
a study by Lapuebla et al. evaluating the activity of meropenem-vaborbactam against
KPC-producing Enterobacterales, the combination inhibited 98.5% (131/133) of isolates
at 1/8 mg/L (104). A global multicenter epidemiological study in 2014 included 10,426
Enterobacterales strains, <2/8 mg/L of meropenem-vaborbactam inhibited 99.3% of the
strains tested (105). Subsequent studies on 11,559 Enterobacterales strains collected in
2015 found that meropenem-vaborbactam inhibited 99.5% of KPC-producing Enterobac-
terales at a concentration of 4/8 mg/L (106). Studies have also shown potent in vitro
activity of meropenem-vaborbactam against the K. pneumoniae strains producing KPC
variants, including KPC-14, KPC-28, KPC-31, KPC-33, KPC-35, KPC-39, KPC-50, KPC-71,
KPC-76, KPC-78, or KPC-79 (14, 107, 108). A retrospective study collected 12 KPC
variant-producing K. pneumoniae isolates from ICU patients between November 2020 to
January 2021, including KPC-62 (n = 11) and KPC-31 (n = 1) (109). The result showed that
all strains that carried KPC variant were resistant to CZA (MIC =64 mg/L), but suscep-
tible to meropenem-vaborbactam (MIC range, 0.25/8 mg/L ~ 2/8 mg/L) (109). Case
reports have shown that meropenem-vaborbactam can successfully cure bacteremia
caused by KPC-31 producers, suggesting that meropenem-vaborbactam may be a new
option for treating infections caused by KPC variant-producing Enterobacterales strains
(49). Similarly, meropenem-vaborbactam has successfully treated infections caused by
KPC-82-producing Citrobacter koseri (56).

Imipenem-relebactam

Relebactam is a new (-lactamase inhibitor with a diazabicyclooctane core, similar to
avibactam (110). Imipenem-relebactam inhibits class A serine enzymes (including ESBLs
and KPC) and AmpCs, but not OXA-48 carbapenemase, metallo-B-lactamase, or class A
carbapenemase GES-20 (111). The Study for Monitoring Antimicrobial Resistance Trends
reported that relebactam restored susceptibility to imipenem in 80.5%, 100%, and
74.1% of imipenem-nonsusceptible Pseudomonas aeruginosa, Enterobacteriaceae, and
K. pneumoniae, in 2015 (112). A study by Papp-Wallace et al. showed that all Enterobac-
terales strains were highly susceptible to imipenem-relebactam (MIC <2 mg/L) (113). A
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study by Carpenter et al. also showed similar results, with imipenem-relebactam being
the most active combination against CRE (MIC5g/99 <0.25/0.5 mg/L) (114). In vitro studies
have also shown excellent activity of imipenem-relebactam against the K. pneumoniae
strains producing KPC variants, including KPC-31, KPC-33, KPC-35, and KPC-62 (109, 115).
Therefore, it may be speculated that imipenem-relebactam has good in vitro antimicro-
bial activity against KPC variants. At the same time, imipenem-relebactam has good
antimicrobial activity against KPC-2- or KPC-3-producing Enterobacterales, so in theory,
using imipenem-relebactam in treating KPC variant infection can effectively prevent the
emergence of KPC-2/3-producing strains.

Aztreonam-avibactam

The infections caused by metallo-B-lactamase-producing strains remain a major
challenge in clinical treatment because avibactam, vaborbactam, and relebactam can
not inhibit the activity of metallo-B-lactamases. However, the aztreonam-avibactam
combination is highly anticipated because metallo--lactamases do not hydrolytically
destroy the antimicrobial activity of aztreonam, and so aztreonam-avibactam can inhibit
the Enterobacterales strains producing either class A serinease, metallo-f-lactamase, or
class D OXA-48 carbapenemase (116). Interestingly, some KPC variant-producing strains
regained susceptibility to carbapenems while simultaneously regaining susceptibility to
aztreonam. KPC-31, KPC-33, KPC-49, and KPC-94 producers showed high susceptibility
to aztreonam (MIC range: <0.5-4 mg/L), but KPC-95-, KPC-82-, KPC-55-, and KPC-14-pro-
ducing strains remained resistant to aztreonam (MIC >16 mg/L) (54, 70, 81). Our results
showed (Li Ding, et al. data unpublished) that the K. pneumoniae strains producing KPC
variant (including KPC-33, KPC-35, KPC-71, KPC-76, KPC-78, KPC-79, and KPC-112) were
highly susceptible to aztreonam-avibactam (MIC ranges, 2/4-4/4 mg/L).

Other antimicrobial agents
Tigecycline

Tigecycline belongs to a new class of glycylcycline antibiotics. It has been touted as
one of the last lines of defense in treating complex infections caused by multi-drug
resistant Gram-negative and Gram-positive bacteria. Binding to bacterial 30S ribosomes
prevents the entry of transfer RNA. It prevents amino acids from integration into peptide
chains, ultimately blocking bacterial protein synthesis and limiting bacterial growth. It
has great in vitro antimicrobial activity against class A, B, C, and D 3-lactamase-producing
Enterobacterales (117). Scattered studies have shown that tigecycline has high in vitro
antimicrobial activity against KPC variant-producing Enterobacterales (55, 82). But an
excess mortality risk was demonstrated in comparative clinical trials (118). While it is
generally not recommended for treating bacteremia because of its low steady-state
concentrations in serum following the current dosing recommendation, tigecycline is
primarily used in combination regimens when treating carbapenem-resistant Gram-
negative infections (119). However, the emergence of tigecycline-resistant strains has
recently been reported (120). Overexpression of resistance-nodulation-division efflux
pumps such as AcrAB is an essential molecular mechanism underlying tigecycline
resistance (121). Additionally, tet(X) gene variants are newly emerging mechanisms of
tigecycline resistance (122, 123).

Polymyxin

Polymyxins are an “old” class of lipopeptide antibiotics approved in the late 1950s
(124). Polymyxins have regained public attention due to their excellent activity against
CRE, CRPA, and CRAB. The two clinically available polymyxins, colistin and polymyxin
B, demonstrate comparable spectra of antibacterial activity, mechanism of action, and
resistance profile because of their similar structures (125). CHINET report in 2018 showed
that polymyxin B had excellent in vitro activity against 272 clinical isolates of CRKP
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(93.8% susceptible) (126). However, nephrotoxicity and heteroresistance are two major
limitations of polymyxins (125, 127).

Modification of lipid A portion of lipopolysaccharide (LPS) is the main mechanism of
Enterobacterales resistant to polymyxin, which can be caused by chromosomal mutations
in genes of the two-component system involved in LPS modification, namely PhoPQ,
PmrAB, and CrrAB, and MgrB (128). Additionally, plasmid-mediated polymyxin resistance
gene mcr-1 can also medicate strains resistant to polymyxin (129). Several studies
showed that KPC variants did not affect the susceptibility of polymyxin, suggesting that
polymyxin still has potential advantages in treating KPC variant infections (41, 55).

FUTURE OUTLOOK

To address the challenges posed by the global spread of blagpc variants, multiple studies
need to be conducted to curb the infections caused by these bacteria. Firstly, countries
need to establish a collaborative surveillance network for the blakpc to survey the spread
of KPC variant producers in real-time and carry out proactive hospital infection control
measures to curb the spread. Secondly, more effective antimicrobial agents need to
be developed continuously to deal with infections and be used rationally to avoid the
emergence of the resistant strain. Countries should open fast-track approval channels for
new drugs to be used to save patients as soon as possible. Thirdly, clinical microbiology
laboratories should strengthen the routine detection and inform blagpc variant-positive
isolates. In vitro diagnostic companies need to develop methods that can accurately
and timely detect new blagpc variants. The manufacturers of automated antimicrobial
susceptibility testing systems should add carbapenemase testing and report the result
of KPC carbapenemases in advance based on clinical need. Rapid whole-genome
sequencing should be applied to predict the resistance profile mediated by KPC variants.
In the context of limited treatment options currently available, there is an urgent need to
develop treatment guidelines for infections caused by KPC variant producers. Finally, ARC
(avibactam-resistant carbapenemase) is classified as a class A enzyme. The designation
of KPC variants is currently confusing. Some KPC variants are designated as ESBLs and
some KPC variants are named as carbapenemases. More KPC variants are being reported,
and more are expected in the future. Although the sequence difference between KPC
variants and KPC wild type is not significant, the corresponding antimicrobial susceptibil-
ity profile and detection techniques are very different. The traditional KPC inhibitor APB
cannot inhibit the activity of ARC. Such ARC enzymes should be named separately to
attract attention.
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